Tonically active neurons in the primate caudate nucleus and putamen differentially encode instructed motivational outcomes of action.
نویسندگان
چکیده
To achieve a goal, animals procure immediately available rewards, escape from aversive events, or endure the absence of rewards. The neuronal substrates for these goal-directed actions include the limbic system and the basal ganglia. In the striatum, tonically active neurons (TANs), presumed cholinergic interneurons, were originally shown to respond to reward-associated stimuli and to evolve their activity through learning. Subsequent studies revealed that they also respond to aversive event-associated stimuli such as an airpuff on the face and that they are less selective to whether the stimuli instruct reward or no reward. To address this paradox, we designed a set of experiments in which macaque monkeys performed a set of visual reaction time tasks while expecting a reward, during escape from an aversive event, and in the absence of a reward. We found that TANs respond to instruction stimuli associated with motivational outcomes (312 of 390; 80%) but not to unassociated ones (51 of 390; 13%), and that they mostly differentiate associated instructions (217 of 312; 70%). We also found that a higher percentage of TANs in the caudate nucleus respond to stimuli associated with motivational outcomes (118 of 128; 92%) than in the putamen (194 of 262; 74%), whereas a higher percentage of TANs in the putamen respond to go signals for the lever release (112 of 262; 43%) than in the caudate nucleus (27 of 128; 21%), especially for an action expecting a reward. These findings suggest a distinct, pivotal role of TANs in the caudate nucleus and putamen in encoding instructed motivational contexts for goal-directed action planning and learning.
منابع مشابه
Encoding by synchronization in the primate striatum.
Information is encoded in the nervous system through the discharge and synchronization of single neurons. The striatum, the input stage of the basal ganglia, is divided into three territories: the putamen, the caudate, and the ventral striatum, all of which converge onto the same motor pathway. This parallel organization suggests that there are multiple and competing systems in the basal gangli...
متن کاملAction and outcome encoding in the primate caudate nucleus.
The basal ganglia appear to have a central role in reinforcement learning. Previous experiments, focusing on activity preceding movement execution, support the idea that dorsal striatal neurons bias action selection according to the expected values of actions. However, many phasically active striatal neurons respond at a time too late to initiate or select movements. Given the data suggesting a...
متن کاملInfluence of reward expectation on behavior-related neuronal activity in primate striatum.
Rewards constitute important goals for voluntary behavior. This study aimed to investigate how expected rewards influence behavior-related neuronal activity in the anterior striatum. In a delayed go-nogo task, monkeys executed or withheld a reaching movement and obtained liquid or sound as reinforcement. An initial instruction picture indicated the behavioral reaction to be performed and the re...
متن کاملNeuronal encoding of reward value and direction of actions in the primate putamen.
Decision making and action selection are influenced by the values of benefit, reward, cost, and punishment. Mapping of the positive and negative values of external events and actions occurs mainly via the discharge rates of neurons in the cerebral cortex, the amygdala, and the basal ganglia. However, it remains unclear how the reward values of external events and actions encoded in the basal ga...
متن کاملActivity of tonically active neurons in the monkey putamen during initiation and withholding of movement.
Tonically active neurons (TANs) of the primate striatum are putative interneurons that respond to events of motivational significance, such as primary rewards, and to sensory stimuli that predict such events. Because TANs influence striatal projection neurons, TANs may play a role in the initiation and control of movement. To examine this issue, we recorded from putaminal TANs in macaque monkey...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 14 شماره
صفحات -
تاریخ انتشار 2004